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An extensive analytic analysis of tilted lamellar growth is presented. We first confine ourselves to a
situation where both solid phases are identical and the concentration is maintained at the eutectic com-
position far ahead of the solidification front. A Rapid Communication has already been devoted to this
case [C. Misbah and D. E. Temkin, Phys. Rev. A 46, R4497 (1992)]. Here, we first focus on an extensive
analysis of this problem and a comparison with the full numerical calculation. We find good agreement
between the two situations, a fact which confers confidence in the applicability of our analytic results to
real situations. In the second line of this work, we shall analyze the effect of an off-eutectic composition.
We show, contrary to some previous work based on a random-walker method, that the effect of the
homogeneous boundary layer (which plays the role of a total net charge in an electrostatic analogy) does
not play a crucial role for parity breaking, in agreement with our previous numerical work in the con-
tinuous limit. Finally, the effect of crystalline anisotropy is analyzed. It is shown that the bifurcation
equation, which is of pitchfork type in the isotropic case, becomes imperfect.

PACS number(s): 61.50.Cj, 05.70.Fh, 81.30.Fb, 68.70.+w

I. INTRODUCTION

It is well known that when a eutectic alloy is submitted
to directional solidification—that is by pulling the sam-
ple at a constant speed in an external thermal gradient—
the solid often exhibits a steady and spatially organized
structure consisting of a periodic array of alternating
lamellae of the two solid phases a and [3: the two phases
grow in a cooperative manner, a growth which is essen-
tially limited by interlamellar diffusion of the two sub-
stances of the alloy. A seminal theoretical paper was
given by Jackson and Hunt (JH) [1]. The crucial point of
their theory was to replace, in a first step, the actual front
(which is an unknown quantity of the problem; a free
boundary problem) by that of a planar front on the aver-
age. This allowed them to compute the diffusion field in
the liquid phase, which is compatible with mass conserva-
tion. They then render the problem self-consistent by im-
posing to the computed field to satisfy local chemical
equilibrium (appropriate for a molecularly rough
interface),—or the Gibbs-Thomson condition. Emerging
from this is a relationship between the average front un-
dercooling A and the wavelength of the pattern A. This
result can be inferred from a simple argument. Indeed,
the growth velocity is, from purely dimensional analysis,
given by D /A and the proportionality coefficient is (up to
a multiplicative number) the dimensionless supersatura-
tion (see Fig. 1), V¥ ~AD /A (the linear dependence on A
stems from linear thermodynamics). On the other hand,
the growth can occur only if the wavelength of the pat-
tern is typically larger than the nucleation radius, ap-
proximately given by A./A, where A, is of the order of
the capillary length, so that the growth velocity takes the
form
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This is—besides small details—the important result that
follows from the JH calculation. In directional
solidification, the growth speed V is fixed while the un-
known quantity is the front undercooling A (which is a
measure of the average front position in the applied
thermal gradient). This quantity is given from Eq. (1.1)
by
V. A
A D A+ -

The first term represents the diffusion effect while the
second one the capillary contribution. Figure 2 shows A
as a function of A, which takes on a minimum at a typical
wavelength A_,,~1/V'V. This wavelength plays an im-
portant role and has often been considered as the natural
wavelength which is selected by the physical system [2].

Since JH a considerable amount of work has been de-
voted to the theory of lamellar eutectics, for which we
have given a brief account in the introduction of a recent
paper [3]. It is now well established that the JH curve
(Fig. 2) should be modified to include the following
features, discovered by solving the full growth equations
[3-5]. (i) For a given A there exists a discrete set of solu-
tions characterized by their average undercooling (Fig. 3)
and not a unique solution as in the JH equation; i.e., we
have many branches A(A). (ii) When typically A=~2A_;,
the branches coalesce by pairs to form fold singularities,
above which steady-state symmetric solutions cease to ex-
ist. (iii) Slightly before the fold singularities take place,
two new branches emerge as a forward bifurcation: the

(1.2)
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FIG. 1. Schematic phase diagram of a eutectic alloy. T is the
temperature and ¢ the concentration of one component. The re-
gions L, a, and 8 correspond to one-phase equilibrium states of
the liquid, the solid a, and the solid B phases, respectively.
L +a and L +f are regions of two-phase equilibrium between
the liquid and one solid phase; the true concentrations of the
two phases are given by the liquidus and solidus lines (full lines)
delimiting these regions. c,, c¢,, and cz denote the equilibrium
concentrations of the liquid and the two solid phases at the eu-
tectic point, whose temperature is 7,. Ac is the miscibility gap:
Ac =cg—c,. Finally, A is the undercooling (measured in physi-
cal unit): A=T, — T, where T is the melt temperature.

lower one corresponds to global parity breaking where
both lamellae cooperate and the upper one to a situation
where the two lamellae act against each other for the
choice of the sign of the antisymmetric component (each
lamellae chooses a different direction, and the widest one
wins). In particular, when both lamellae have exactly the
same properties, the upper branch would correspond to a
situation where each of them is asymmetric but a mirror
image of the other; as a consequence the pattern is not
traveling anymore.

The parity-breaking bifurcation is a robust feature met
experimentally in many physical situations [6-8] and
dealt with theoretically in different contexts [9—-13]. Ex-

Average undercooling A

Wavelength A

FIG. 2. A as a function of A obtained from the Jackson-Hunt
theory.
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FIG. 3. Average undercooling as a function of A for four
branches of axisymmetric solutions to the full growth equations
(squares, tip-down and tip-up triangles, and circles). The sym-
metric branches form two pairs, whose members coalesce into
fold singularities at a critical wavelength A.. For A> A., no ax-
isymmetric solutions exist. Slightly before the fold, two new
branches merge as forward bifurcations.

cept in the situation where the dynamics can be mapped
onto that of two coupled Fourier modes—a situation met
close to the codimension-two bifurcation—most of the
progress first came from numerical works. In particular,
the eutectic system seemed to defy an analytic treatment.
We found [4] that the JH theory, although it misses the
various features described above, describes remarkably
well the symmetric pattern below the fold. In particular,
this also holds close enough to the birth of the broken-
parity state. This gave us a strong hint that a simple
treatment, similar to that of JH, which involves an an-
tisymmetric component in the front profile should consti-
tute a good starting point for the analytic theory of parity
breaking. We have indeed built up an analytic theory
which has captured the essential features and to which
we have already [11] devoted a Rapid Communication.
The main purpose of the present paper is threefold.

First we shall give an extensive analysis of the parity-
breaking bifurcation for a completely symmetric
system—that is, in a situation where the two solid phases
have identical properties—and with the concentration
far ahead of the solidification front maintained at the eu-
tectic composition. We make a comparison with the full
numerical analysis. We find good agreement between the
two treatments. This gives confidence to our analytic
work, in the utilization of our analytic expression for ex-
periments.

Second, we shall relax the condition that the concen-
tration is at the eutectic composition, while keeping all
the other properties identical. This part is motivated by
a belief that the deviation from eutectic compositions
plays the role of a sort of a driving force for some insta-
bilities, such as the oscillatory [14] instability and the tilt-
ing one [15]. This has naturally led us to elucidate this
question and to see whether the tilting instability, for ex-
ample, necessitates an off-eutectic composition or not. In
our previous numerical analysis [5], we did not find that
being at the eutectic point is crucial for parity breaking, a
result which has been corroborated by recent Monte Car-
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lo simulations [16]. It is instructive to investigate in our
analytic treatment how the off-eutectic composition
enters the parity-breaking bifurcation. We have elucidat-
ed this question. First we should note that being at an
off-eutectic composition results in a homogeneous
diffusion layer ahead of the front. In an electrostatic
analogy, this means that there is a total net charge, creat-
ing a Yukawa-like potential, in addition to the dipolarlike
distribution (since one phase absorbs, say the B com-
ponent of the alloy, while the other one rejects it, there is
a pluslike-negativelike charge distribution—a dipolar
distribution). Our analytic analysis shows that the homo-
geneous layer does not enter directly the parity-breaking
mechanism (it enters just in the global mass
conservation—an obvious effect). In other words, the
mechanism is, in some sense, a “screening” effect of di-
poles in the mechanism of parity breaking. This state-
ment should not mean that the effect of the “total
charge” is completely absent in eutectic growth, but only
that it is unimportant for antisymmetric fluctuations.
Another way of viewing this is to realize that, to leading
order, an off-eutectic composition creates only a sym-
metric component in the diffusion field to which parity
breaking is indifferent.

The third line of the paper has its source in experimen-
tal observations according to which the crystalline aniso-
tropy, although weak, plays a crucial role in the dynam-
ics of tilted domains. In recent work we have investigat-
ed numerically and phenomenologically the role of an-
isotropy. Here we shall show analytically from the “mi-
croscopic” model, that the coupling between the spon-
taneous parity-breaking bifurcation and the crystalline
anisotropy destroys the pitchfork bifurcation in favor of
an imperfect one.

The scheme of this paper is as follows. In Sec. II we
write down the basic equations. In Sec. III we deal with
the theory of spontaneous tilted growth. We first exam-
ine the case of symmetric systems and we compare the re-
sults with those obtained from the full numerical calcula-
tion. Then we extend the calculation to the off-eutectic
systems. In Sec. IV we analyze the effect of crystalline
anisotropy. The conclusion and outlook are presented in
Sec. V. Some technical details are relegated to three ap-
pendixes.

II. BASIC EQUATIONS.

Since the model equations have been already described
in detail in our previous work [4], we will keep their dis-
cussion brief. For the moment, we neglect surface ten-
sion anisotropy. In Sec. IV we shall make the changes
implied by anisotropy.

Let ¢ be the concentration in the liquid of one of the
components of the eutectic system, c, its value at the eu-
tectic point, and Ac the miscibility gap—see the phase
diagram given in Fig. 1. In terms of the dimensionless
concentration field ¥ =(c —c¢,)/Ac, the diffusion equa-
tion for a tilted pattern with a tilt angle ¢ reads

2

1 0u_op o 2 |3u Qu
D ar Vu+l +tan(¢)ax

3z (2.1)

Coordinates are measured in a frame of reference that is
attached to the liquid-solid interface (and is identical to
the laboratory frame for ¢=0). In this equation, D is the
diffusion coefficient, ] =2D /V is the diffusion length, and
V is the pulling velocity. If the tilt angle is nonzero, the
interface moves, in the laboratory frame, with a velocity
V tan(¢) along the x direction. Equation (2.1) is subject
to the condition far ahead of the solidification front

u(z=w)=u,=(c,—c,)/Ac, 2.2)

where u , may be positive (hypereutectic), negative (hy-
poeutectic), or zero (eutectic), and to mass conservation
at the liquid-solid interface [z =§(x, )]

+v,/2, a phase
—v,/2, B phase,

2.3)

interface

where v, =(V +£)n, + V tan(¢é)n, is the normal velocity
of the interface. The normal vector n points from the
solid to the liquid. Note that use has been made of the
fact that the two solid phases are equivalent [i.e.,
(c,—cy)/Ac =4 and (¢, —cg)/Ac =—1]. Furthermore
the partition coefficients k, and kg have been taken to be
equal to 1. Finally, for a molecularly rough liquid-solid
interface chemical equilibrium results in the Gibbs-
Thomson condition at the two boundaries

—¢&/lp—dyk, a phase

ulinterface= §/1T+d0K, Bphase , (2.4)
where
mIAc YSITe
= = 2.5
1= do Lm;Ac @3

are the thermal and the capillary lengths, respectively, k
is the front curvature taken positive where the solid is
convex, m; is the modulus of the slope of the liquidus
lines, v, is the liquid-solid interface tension, and L is the
latent heat per unit volume. Since the two solid phases a
and S are taken to be equivalent, the three quantities m,,
vYs» and L characterize the liquid-solid a transition as
well as the liquid-solid 3 one.

Let us make a few remarks about Eq. (2.4). First, the
capillary length has been defined here in the pure isotro-
pic case (the surface tension y; has been taken indepen-
dent of the liquid-solid interface orientation). In the pres-
ence of crystalline anisotropy the surface tension should
be replaced by the surface stiffness, as we will see in Sec.
IV. Second, for our practical purpose, we will approxi-
mate £ /Iy by (£) /I, which means that the front can be
viewed to be, practically, in an isothermal environment.
This is justified by the fact that the front excursion,
which is of order A, is much smaller than the thermal

length (in standard experiments, [;/I~1 while
A/1~1072). Note that —{¢) /I is nothing but the di-
mensionless average front undercooling A

(A=(T,—T;)/m;Ac where T; is the temperature of the
interface).

Finally, to complete our set of equations we impose
mechanical equilibrium at the triple point, where the
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three phases meet

YaptVaut7vs=0. (2.6)

The vector y;; designates the surface tension between
phase i and phase j. If the surface tensions are known,
then Eq. (2.6) determines uniquely the contact angle for
axisymmetric lamellae (see Fig. 4). We shall denote by 6
this contact angle. For a tilted pattern with a tilt angle ¢,
the angles between the tangents at the liquid-a,B inter-
section and the horizontal axis (see Fig. 4) at two ends of
a given lamella are different (because of asymmetry). Let
0 and @' denote these two angles, either for the a phase
or the B phase. It is easy to see from Fig. 4 that

0=0—¢, 8'=0+¢ . 2.7

The set of equations (2.1)-(2.7) completely describes the
solidification dynamics.

III. PARITY BREAKING

In this section we deal with the analytic treatment for
parity breaking. We examine first the case where the
melt is exactly at the eutectic composition (i.e., u , =0).
Because the treatment in this case is much simpler than
in the general situation, it is instructive to begin with, in
order to easily identify the main physical ingredients. Be-
fore going further we rewrite the basic equations in di-
mensionless form. For that purpose, we take the
diffusion length / as a unit. For a stationary tilted pat-

tern, Eq. (2.1) takes the form
V2u +2u,+2tan(¢)u, =0, (3.1

subject to mass conservation and Gibbs-Thomson condi-
tions at the interface [z =§(x)]

u,—&.u,=F[1-¢, tan(d)] ,

(3.2)
(3.3)

The upper and the lower signs refer to the solid a phase
and the B phase, respectively. Finally the mechanical
equilibrium conditions at the triple points can be rewrit-
ten as

. (0)=tan(6—¢), {,.(x,)=—tan(0+4¢) (3.4)

_ FIG. 4. Definition of the contact angle 6, the pinning angles
6 and €', and the tilt angle ¢. Note that ¢ is counted positive
for a tilt to the right, while 6 is always positive.

for the a lamella and

£.(x,)=tan(6—¢), £ (A)=—tan(6+¢) (3.5)

for the B lamella. The quantity x, designates the x posi-
tion of the triple point.

A. Euctectic compositions

We consider here the completely symmetric case
(u,=0). As a consequence of mass conservation, the
lamellar growth structure has the following feature: the
two lamellae a and B have exactly the same width (the
volume fraction 7 of the a phase is equal to 1).

The spirit of the calculation is inspired by that of JH
for axisymmetric states [1]. To determine the diffusion
field for axisymmetric states, JH assume that the front is
planar, sitting at an average position, which is a priori
unknown. That is, they solve Eq. (3.1) subject to condi-
tion (3.2) at £=¢, u,(£)=F 1. Using the expression of
this diffusion field at z =Z, the Gibbs-Thomson equation
provides an ordinary second-order differential equation
for the interface position {(x), which can be solved, in
principle, or directly averaged. Emerging from this
analysis is a relationship between the front undercooling
and A [basically Eq. (1.2)].

The simplest treatment beyond that of JH involving
broken-parity solutions consists in solving the von Neu-
mann problem [i.e., Eq. (3.1) subject to the boundary con-
dition Eq. (3.2)] by considering a small asymmetric devia-
tion from the planar interface. The profile is taken as
simple as

'x tan(6—¢), 0=<x =<x,

T (A/2—x)tan(6+¢), xo<x <A/2

(3.6)

§(x)—¢ (3.7)
where x, is the intersection point (see Fig. 5), given by
xg=Atan(0+¢)/2[tan(6+¢)+tan(6—¢)].

The first step is to determine the diffusion field corre-
sponding to the front defined above. We write the gen-

(o]

Il
0.0 A2 A X

FIG. 5. The front profile used to determine the diffusion field
for a completely symmetric system.
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eral solution of the stationary diffusion equation [Eq.
(3.1)] for a spatially periodic system as

u(x,2)="3 Cye"n%e %7 (3.8)
n

where k,=2mn/A, Q,=1+1/1+k?—2ik,tan(¢), and
C, are undetermined coefficients for the moment. In the
(standard) small-Péclet-number (which is just A in re-
duced units) limit Q, ~ |k, | for n50 (Q,=2).

To determine the diffusion field (i.e., the coefficients
C, ) to leading order in the deviation from JH theory, we
expand the continuity equation in the front deviation
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given by (for u , =0)

uO(x,z)= 3 By e %Y, (3.10)
n#0
where
4e—in‘n"r/
B, =——si . 3.11
" AKO, sin(nn) (3.11)

The coefficients C, are obtained by inserting (3.8) into
Eq. (3.9). After lengthy algebra, the final result can be
written as follows:

¢—C. Since this quantity is of the order of the Péclet & .| 2T .
number (recall that § is rescaled by the diffusion length), u(x,2)= El D3, — 1810 A (2n —1)x
the remaining terms would produce higher-order contri-
butions in the Péclet number. To leading order, the con- 2
tinuity equation takes the form +E,,_cos T(Zn —1)x
u,=—(=Du +EuOF1-¢ tan(d)],  (3.9) 0D
Xe " ) (3.12)
where the fields on both sides are understood to be evalu-
ated at z=¢. The quantity u'® refers to the JH field where
J
_ 2A Atan(¢) (—) (+) 27 Atan(6+¢)tan(6—¢)
D,, = + H'7'+H' "cos | —x¢(2n —1) | 1+
71 wn—172  a2n —1)? l Al m(2n —1H™P
4 4ir
1—cos 5 Xom . 1—cos = Xom
—2AH'" +AH'™) , (3.13)
,,,2;'1 mm[4m?—(2n —1)?] ,,,2=1 mm?[2m —(2n —1)]
sin %ZLxO(Zn —1) (2n —1)sin ﬁi‘zxom
E,, =—AH"tan(¢) —AH'™
=l ¢ m(2n —1)? 2:"1 mm?[4m?*—(2n —1)?]
sin 4—ﬂ-x m
n—1 A 0
+AHM S (3.14)

= Tm2m —2n—1)]

where H'*)'=tan(0+¢)*+tan(0—¢). We can easily
check that D,, _; and E,, | are even and odd analytic
functions of ¢, respectively. Indeed, it suffices to note
that in the transformation ( f—» —¢), the quantities H*
and x, transform into +H'*) and A/2—x,, respectively.
The symmetry properties of the coefficients D,, | and
E,, | result from the fact that the diffusion field is in-
variant under the transformation [¢— —9,
x——(x —A/2)].

At this stage, we make the problem self-consistent by
imposing that the diffusion field has to be compatible
with the Gibbs-Thomson condition. This yields

gxx

dy———
*(1+¢2)2

+A=*u(x,z=L¢), (3.15)

where u is the diffusion field determined above. We have
put ¢ in the argument of the diffusion field to recall that u
is parametrized by ¢.

The problem therefore reduces to solving a nonlinear
differential equation for the interface profile. The in-
tegration of this second-order equation over a half-period
requires the determination of two integration constants,
which are furnished by the two boundary conditions Eq.
(3.4) on the slope &, at the triplet point. At this stage ¢ is
still undetermined. So it seems as if the present problem
could be solved for arbitrary values of ¢, since we have
made no assumption on ¢. This is fortunately not the
case. Indeed, given a front profile that solves Eq. (3.15)
subject to the mechanical equilibrium condition Eq. (3.4)
will not in general ensure that the two ends of the lamella
[£(0) and &(A/2)] are at the same height. Therefore, the
demand that the solutions be physical is satisfied by re-
quiring that

§(A/2,4)—£(0,4)=0,

where again we put ¢ explicitly in the argument, for the
same reasons we mentioned above. This equation leads

(3.16)
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generically to the selection of a discrete set of ¢ values, as
we will see later. The self-consistency equation can be
thought of as a minimization condition of a free-energy
function in a Landau theory of phase transition. The
quantity ¢ is the analog of an order parameter in phase
transition phenomena.

It can easily be checked that Eq. (3.16) is satisfied for
¢=0. Indeed, for ¢=0, the diffusion field is axisym-
metric with respect to the center of each lamella [see ex-
pression (3.12) by taking ¢=0 and consequently

xo=A/4]. The front profile, solution of Eq. (3.15), is

therefore axisymmetric too, so that the condition is au-
tomatically satisfied. The interesting point is to investi-
gate whether Eq. (3.16) is satisfied for a nontrivial value
of ¢.

In order to deal with this question, we proceed as fol-
lows. We integrate Eq. (3.15) once over x (from O to x)
and make use of the mechanical equilibrium condition at
x=0. We get

gx . x
—=—=sin(6—¢)+ [
Vit ’

The slope {, can be expressed as a function of f, and a
second integration over a half-period provides

u—A
do

dx=f(x). (3.17)

E(A/2,0)—§5(0,0)=F (¢, A1), (3.18)
where
A2 f(x)
F ,)\., = — . 3.19
(¢ A= [ i (3.19)

u stands for the material and control parameters (e.g., d,
0, and /). The self-consistency condition (3.16) amounts
then to the search of the zeros of the function F

F(¢,A,u)=0. (3.20)
This equation is a general expression for ¢ as a function
of the other parameters. Before exploiting it, let us deter-
mine the average front undercooling. For that purpose,
we average the Gibbs-Thomson equation [Eq. (3.15)] over
one period (actually over a half-period, because the two

lamellae a and B are identical). The result is
A=220 (Gin(0+6)+sin(0—)] +2 3 —2n=t
x {sin ¢)+sin )} > on—1)

n=1
(3.21)

Equations (3.20) and (3.21) are general expressions which
determine ¢ and A as a function of the other parameters.
Before going further, let us examine the symmetry prop-
erties of the average front undercooling and the (bifurca-
tion) function F. We can immediately check that
A(—¢)=A(¢), as it should be. F has also a well-defined
parity, F(—¢)= —F (¢), but this is not directly visible on
its form (the proof is given in Appendix A). Note that
the parity of F tells us immediately that the self-
consistency relation is always satisfied for axisymmetric
states [ F (¢ =0)=0], as mentioned earlier.

Now we proceed to the analysis of Eqs. (3.20) and
(3.21). These are formally nonlinear algebraic equations

which can easily be solved numerically. We shall not,
however, use the “brute-force” approach; rather we wish
to pursue the analysis analytically. To do so, an assump-
tion is needed: we assume that the contact angle 0 is
small enough, an assumption which allows us to push the
analysis to the end, and it will turn out that the obtained
expressions can safely be extrapolated to finite angles.

A central point in the small contact angle limit is that
it becomes legitimate to neglect £ against 1 in the square
root appearing in the expression of F [Eq. (3.19)]. This
assumption can be justified as follows. Indeed, an order
of magnitude of f can be deduced from the simple case of
symmetric growth (i.e., by using the JH diffusion field).
We obtain f ~A2/(7%d,). For A~ A, where A, is the
JH minimum undercooling wavelength (A%, ~°dsin@),
f ~sinf. So for small enough 6, f? is small as compared
to 1. In this limit, F reduces to a simple integral involv-
ing a linear superposition of cosine and sine functions,
which is easily evaluated. After a simple manipulation,
we obtain

F(qs,x,y):%{sin(e—¢)—sin(9+¢)}

Ae By

2d, ,El m(2n —1)* (22
Since we are interested in the possibility for the sym-

metric front to undergo a transition to the broken-parity

state, we only need to analyze the self-consistency equa-

tion about the bifurcation point. For that purpose, we

perform a Taylor expansion of Eq. (3.22) about ¢=0. Up

to third order in ¢ this expression yields

a
4 2 3
(0. —0)dp— =0, (3.23)
m(o.—0o)¢ 402¢
with
o do ~07 a,
0:——{—7}:’—2‘, 0‘6-——7"4 (324)

The tildes indicate that the variables are written in physi-
cal units. The calculation has involved evaluations of nu-
merical series, some of them have been evaluated exactly,
the others computed numerically. The coefficients a; and
a, are precisely numerical constants obtained from series
summation (a;=0.66 and a,=2.95).

Equation (3.23) shows that for o >0, $=0 is the only
solution, while for o <o there exists two solutions in ad-
dition to the trivial one, given by

2120
¢=iW\/ac-—a . (3.25)
This result can be interpreted as follows: the axisym-
metric solutions undergo a spontaneous supercritical
transition to broken-parity states at o =c¢ .. Stated in
another way, for a given growth velocity the initially
symmetric structure loses its stability in favor of a
broken-parity state for A>X.=1/2d,D/Vo,. The bi-
furcation diagram is shown on Fig. 6: it represents the
tilt angle ¢ as a function of o~ !/, a quantity which is
proportional to A.
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FIG. 6. The bifurcation curve showing the tilt angle as a
function of o ~1/2,

Once we have characterized the parity-breaking transi-
tion, we are in a position to analyze the implication on
the front undercooling. Expanding Eq. (3.21) up to
second order in ¢, we obtain

B B
A=4A ae+;;— —ﬂ—§¢2 , (3.26)

where 8 and 3, result from evaluations of series involved
in the calculation (8;=~1.0 and ,==0.12). For the sym-
metric state (¢ =0) we recover the Jackson-Hunt result.
Using the expression of the tilt angle [Eq. (3.25)], we can
evaluate the average front undercooling for asymmetric
states. The result is shown in Fig. 7 and compared to the
JH branch. The branch associated with the broken-
parity states emerges from the JH one at the critical
wavelength A, determined above. This branch lies below
the JH one, which means that, at fixed wavelength A
(A>A,), broken-parity states have smaller undercooling
than the symmetric ones. Equivalently, for a given un-
dercooling the new branch corresponds to faster growth
than the JH one. All the features following from Egs.
(3.25) and (3.26) are in qualitative agreement with numer-
ical solution of the full problem [5].

Further results follow. Since the wavelength A, is
often considered as a reference, it is interesting to com-

0.015
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0.005

Average undercooling A

0.000 ! . .
0.00 0.02 0.04 0.06 0.08

Wavelength A

FIG. 7. Undercooling as a function of A for axisymmetric
states (solid line) and broken-parity states (dashed line).
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pare the critical wavelength for the onset of parity break-
ing to it. Using the value of o, and the definition of o
[Eq. (3.24)], together with the JH expression of A ; ., we
obtain

Ay /Ay =2.18/V/5in(0) . (3.27)

The parity symmetry is lost at wavelength larger than
Amin» that is, in a regime where the front dynamics are
governed by diffusion, as found from the full numerical
analysis. This ratio is plotted in Fig. 8 as a function of
the (unique) parameter 8 and is compared to the one ob-
tained from the full numerical calculation of the
integrodifferential equation (see Ref. [5]). Although our
result was expected to be valid at small enough 6, the
agreement with the full calculation is impressively good
at large angles too. Two remarks are in order. (i) The
fact that the JH theory describes well the lower branch
for symmetric growth is now well understood and is attri-
buted to the smallness of the Péclet number. Similarly,
we could expect our theory, which is adapted to tilted
growth to do equally well. (ii) The fact that simple ana-
lytic expressions obtained in the small contact angle limit
provide good agreement with the full calculation confers
to them more importance than what could a priori have
been expected. In particular one important result ob-
tained here is the one given by Eq. (3.27). It gives an ana-
lytic expression for the appearance of parity breaking,
with the minimum undercooling as a reference. In a real
experiment the dispersion of wavelength is sometimes
large but limited. When the wavelength is large enough,
one observes tilted lamellae. Formula (3.27) is a useful
expression to confront to experimental findings. Of
course, we have in mind that a completely symmetric sys-
tem is unrealistic and there is a strong need to derive an
expression analogous to that given by Eq. (3.27) in the
most general case, with the aim to use it in real situa-
tions. The calculation, although it involves a tedious
algebra, is feasible in principle and we hope to communi-
cate a brief account on this question in the future.
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<
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FIG. 8. Ratio of the critical wavelength for the appearance
of the broken-parity state to that corresponding to minimum
undercooling in the JH theory versus the contact angle in both
analytic (triangles) and full numerical (solid line) cases.



B. Off-eutectic compositions

This work is motivated by a belief [14,15] that the devi-
ation from eutectic compositions plays a crucial role in
driving some instabilities and in particular the tilting one
[15]. Although we found numerically that our result con-
tradicts that of Karma [15] (whose work is based on a
random walker method) and that it has been corroborat-
ed by recent Monte Carlo simulations [16], it is instruc-
tive to see in a transparent way, thanks to the analytic
analysis, the role played by off-eutectic compositions.

The novel feature here is the presence of a uniform
diffusion boundary layer ahead of the solidification front.
We show below that this boundary layer does not play a
crucial role in the tilting instability.

For off-eutectic compositions, the two lamellae are not
equivalent: they have different widths and consequently
different front profiles. (Note that due to mass conserva-
tion the volume fraction 7 of the a phase is related to the
melt composition u,, [17]. In the small-Péclet-number
limit we can safely use p=~1—u_,.) As a consequence,
two consecutive triple points of a broken-parity state are
not in general at the same height. So, in order to charac-
terize broken-parity states, we need to introduce another
parameter y,, in addition to the tilt angle ¢, which mea-
sures the height difference between two consecutive triple
points. As in Sec. III A, we consider an asymmetric front
profile by joining two consecutive triplet points by
straight segments:

—Zzg+x tan(6—¢), 0=x =x, (3.28)

§x)—&= y
—2‘1+(nx—x)tan(e+¢), x;<x<nA (329

for the a-liquid interface and by

Y0 4 (x —pAtan(6—¢) ,

2
nA<x <gi+x, (3.30)

§x)—E5= _122+(A—x)tan(9+¢) ’

nA+x, <A (3.31)

for the B-liquid interface. The quantities x; and yA+x,
are the intersection points of the straight segments (see
Fig. 9) and are given by
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FIG. 9. The front profile used to determine the diffusion field
for a nonsymmetric system.

We should remark here that the extent of the a phase is
taken in the range [0,nA], where 7 is considered here to
have the same value as in the symmetric pattern. It can
easily be checked that the correction is yytan(¢), and we
shall see later that at the level of approximation this con-
tribution induces higher-order terms. In fact, we are at
liberty to take, in a variational-like formulation, the
above profile as the “guessed” one for which we compute
the diffusion field and then render the problem self-
consistent with that profile. The quantities x, and H'*’
are the same as those defined in the pure symmetric situa-
tion. Note that the triple points sit at a height of *y,/2
(measured from the reference position £). We have made
this choice in order to preserve the equivalence between a
state characterized by a tilt angle ¢ and a height
difference y, and the one by a tilt angle —¢ and a height
difference —y,. Note also that this front satisfies the
mechanical equilibrium conditions [Egs. (3.4) and (3.5)].

Given this geometry, the strategy is now exactly the
same as the one presented above. We determine first the
diffusion field corresponding to the front defined above.
In the present situation, the expression of the JH field
1'9 [Eq. (3.10)] contains an additional term

By=n—1, (3.33)

which is the strength of the homogeneous diffusion
boundary layer. After a heroic boot of algebra, we obtain

Yo 0 3 i i -
x,=2mAx,+ —o X2 =2(1—nA)xy— —a - (3.32) the expresswn. of the coefficients C, and write the final re
H H sult as follows:
1
= -2z—9) < n,.__ _ 2mn -Q,(z=0
u(x,z)=u_,+Fge + > 1{F,cos (x —mA/2) | —G,cos X (x —mA/2) | ie , (3.34)
n=1

where
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y 2y 2y
F0=—%H(+)tan¢+(n—%) lﬁ[nzﬂ1—n>2]tan(9+¢)tan(9-¢)+7° (n— L) (A—4xy)— — ]Hn 1
(3.35)
and
F, :?sin[mmﬁJz‘—ztan(p{zsin[mm]H">+I},‘>H‘+’}
Tn 27°n
2 . 24 (12 _ 2y
+ p—” sm[nrrn]{ +(1—n)7] (1—29)A—4x,)+ 1753
_|__2\';+) H J(+)_2
e sin[nmn]cos[ymnl{J, cos[nmn]}
—AHY S (m +n)sin[nm(m :nl]—im _2”)5111[7777'("1 +n)] (7 —2 cos[grm])
m=1 mm(m-—n*)
(m+n)
+oagH "y SATn =] G gt (3.36)
e mm%m —n)
G,= ;; >H tan(¢)J, "'+ —— H' " sin[nmn]cos[nmn I
2m°n Tn
hd +n)sin[nm(m —n)]+(m —n)sin[nmr(m +n)] sin[ym(m —n)]
+AH) tm 1y —oagt) s sinlyrtm —n)]
m2=1 mm*(m?—n?) { )= zﬂ mmim —n) ("
(m+n)
(3.37)
[
where dy bxx +A=xu( (3.40)
—_— u(x,z= .
N 2 (14232 6,50
I =sin | ==n(x,+7mA/2)
A u is now parametrized by the tilt angle ¢ and the height
difference y, between two consecutive triple points. Us-
) ing the mechanical equilibrium conditions at the ends of
Esin | =—n(x; —nA/2) (3.38)  each lamella [Egs. (3.4) and (3.5)], we can determine the
front profile for each solid-liquid interface, subject to the
following additional constraints:
21
Ty =cos | STn(xy+mA/2) &, $,90)—5(0,4,90)=0 » (3.41)
§(As¢,y0) —E(nA,b,90)=—yo (3.42)
+cos gln (x;—mA/2) (3.39) These two self-consistency equations lead generically to
A the selection of isolated values of the parameters ¢ and

The coefficients F, and G, have the following sym-
metry  properties: F,(—¢,—yo)=F,(¢,yy) and
W(—d,—yo)=—G,($,yy). This can be easily checked
by noting that in the transformation (¢ — —¢,yo— —y,),
H'®) changes into +H'*), x, into A/2—x,, (x; —mA/2)
into —(x;, —mA/2), and (x,+nA/2) into —(x,+7nA/2).
As in the pure symmetric case, the symmetry properties
of the coefficients F,, and G, are a consequence of the in-
variance of the diffusion field under the transformation
[¢—>—¢,y0—>—yo,x——(x —qA)].

Having obtained the diffusion field we can solve for the
front profile, which is compatible with that field. For
that purpose, we insert the expression of the diffusion
field into the Gibbs-Thomson equation [Eq. (3.15)], which
then reads

»o- These two quantities can be thought of as coupled or-
der parameters, which are determined by two
minimization-like conditions. In order to exploit the
self-consistency equations, we follow the same spirit as
that of Sec. III A. The Gibbs-Thomson equation [Eq.
(3.40)] can be integrated once over x [from O to x ( = 7A)
for the a lamella and from A to x ( < A) for the B lamel-
la]. We obtain

b

=f(x) (3.43)
Vitg
for the a lamella and
Sx . xu+A
—————=sin(0—¢)+ dx=g(x) (3.44)
Vi+E fﬂh
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for the B lamella. We then express the slope {, as a func-
tion of f for the a-liquid interface and as a function of g
for the B-liquid interface, and perform a second integra-
tion over each lamella. The result is

S(qA, $,y0)—5(0,8,¥0)=F ($,y0, A, 1t) , (3.45)
S(A8,90) —E(MA,,y0) =G ($,y0,A, 1) , (3.46)
where
_ i f(x)
F(¢>y07;\'7,u') fO \/_i——f'z )
N (x) (3.47)
G(¢,y01}"’ﬂ):f —g——:

n \/l—g2

Here p is also an abbreviation for the material and con-
trol parameters. The self-consistency conditions [Egs.
(3.41) and (3.42)] amount to solving the following non-
linear algebraic equations:

(3.48)
(3.49)

F(¢7y0’}\',,u)=y0 9
G(,y0,A0)=—yp

These two equations are general expressions for the two
unknown quantities ¢ and y,.

The average front undercooling is easily related to the
other parameters A and u. It suffices to integrate the
Gibbs-Thomson equation over one period. We get

2d
A=2(n—%)(Fo+uw)+—k~°{sin(e+¢)+sm<e—¢)}
42 3 2sinlnmn] o (3.50)
n=1 mn
It can be checked that A(—¢, —y,)=A(¢,y,) (see the

symmetry properties of the coefficient F,,). F and G have
also a well-defined parity under the transformation
(¢——d,y0— o) —¢,—yo)=—F(¢,y0), and
G(—¢,—yo)=—G(¢,yy). This property is proven in
Appendix A. Using the symmetry properties of F and G,
we immediately deduce that the self-consistency equa-
tions are automatically satisfied for symmetric states
(¢=0and y,=0).

We have to find whether the self-consistency equations
are satisfied by nontrivial values of ¢ and y,. Both equa-
tions can be analyzed numerically, but as in the pure
symmetric case, we will confine ourselves to the small
contact angle limit where the analytic calculation can be
pursued to the end. In this limit we can also show (by us-
ing the same arguments as before) that 2 and g2 can be
neglected against 1. This simplification allows us to
rewrite the functions F and G as

F=n—§-{sin(9—¢)—sin(9+¢)}

© 2
(3.51)

G =(1—n)%{sin(6—¢)—sin(6+¢)}

+ 2 -———LZ cos[nmA]G,

A2

+ 2 (3.52)

—— 5 2sin A]G,
2 i [nmA]

We have used in this calculation the expression (3.50) of
the undercooling. It is important to note that at this lev-
el there is no trace of the uniform boundary layer (i.e.,
F,) anymore. At the stage where the functions F and G
were defined [see Eq. (3.47)] the term F, was still present
(in the definition of f) in the bifurcation equation. How-
ever, there we had not yet used the expression of the
average front undercooling as a function of the other pa-
rameters. When we do so, the F, terms cancel exactly;
the result is expressed by the above two equations. As
stated in the Introduction, the homogeneous boundary
layer plays a role similar to that of a total net charge, in
an analogy with electrostatics. The only terms that sur-
vive in the final bifurcation equation are the G,’s. We
can mention, if need be, that due to symmetry the homo-
geneous boundary layer, which is symmetric, does not
enter the parity-breaking mechanism. The associated
equiconcentration lines are reminiscent of those of a di-
polar distribution [18]. Indeed since one phase (the B
phase) absorbs, say the B component of the alloy, while
the other (the a phase) rejects it, the situation is analo-
gous to that of a distribution of alternating + and —
charges. If n=1, the total charge is zero and the distri-
bution is purely dipolar, while for 71, there is an addi-
tional electrostaticlike potential, associated with the
homogeneous diffusion boundary layer. The growth
mechanism of lamellar eutectics is cooperative and
operates on the scale of a wavelength, so that the “elec-
trostatic potential” is ruled out by the local dipole in the
mechanism by which a tilted pattern is formed.

In order to analyze the bifurcation, we perform a Tay-
lor expansion of F and G in the small parameters ¢ and
Yo- The expansion of F and G up to third order reads

F(¢,y0)=a,p+c,yo+b,¢*+d pod*+q,y56+p1y5
(3.53)

G(¢’)’o):az¢+C2J"o+b2¢3+d2J’0¢2+‘12)’(2)¢+P2J’(3) >
(3.54)

where the coefficients a;, b;, ¢;, d;, p;, and g; are functions
of the wavelength A and the volume fraction 7 of the a
phase. Their expressions are given by

a,(A,m)=n7R,+S,;—4nric ,
a,(A,m)=—(1—m)7R,+S,—4(1—n)7r*0 ,
by(A,m)=7mHnmR,+S,)/66%,
by(A,p)=m—(1—n)mR,+S,]1/66%,

c (A, m)=nmS;+R;,

¢ (A,m)=—(1—n)mS;+R; .

(3.55)
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Ry, 81, R,, S5, R3, and S; are numerical series depend-
ing on the value of the parameter 7 (their explicit expres-
sions are given in Appendix B). The series S; are even
functions of the parameter (n— 1) while the series R; are
odd functions of the same parameter. The coefficients d;,
P;, and g; will not enter the subsequent calculation, as we
shall see below, so that we do not give their expressions.
Note that the expansions (3.53) and (3.54) are composed
only of those terms which are compatible with the sym-
metries evoked above.

Let us focus on the expansion of the function F and our
reasoning will apply perfectly well to the function G.
Our aim is to extract from the first bifurcation equation
(F=y,) yo as a function of ¢, which upon substitution in
the second equation (G =—y,) provides the expression
of ¢. First it can be checked with the help of definitions
(3.55) and Appendix B (where the series S’s and R’s are
defined) that for n=3, we have a;=a, and b, =b,. A
substraction of Egs. (3.53) and (3.54) provides y,=0, and
when substituting this result into both equations we ob-
tain two identical results, which are nothing but the bi-
furcation equation in the completely symmetric system.
If we confine our attention to small deviations from the
symmetric system, it is legitimate to keep only the lead-
ing term in y, in Egs. (3.53) and (3.54). On the other
hand, a, is small close to the critical point (by continuity
from the symmetric case), so that ¢° should be kept in the
determination of y, as a function of ¢ (in the reference
state where n=1, ¢’~a,4). We can thus reduce Egs.
(3.53) and (3.54) to the following expressions:

F(¢,yo)=a,p+c,y,+b,¢>+ (higher-order terms) ,
(3.56)

G (¢,y0)=a,¢+c,yo+b,¢3+ (higher-order terms) .
(3.57)

From the first self-consistency equation (F =y,), we ob-
tain an expression of y, as a function of ¢

a; b,

= +
Yo 1-—c1¢

3
e (3.58)

Plugging this expression into the second self-consistency

equation (G =—y,), we obtain a closed expression for
the tilt angle ¢

ap+b¢*=0, (3.59)
where

a=a,(1—c;)+a,(1—c,)=—8n% +47*Toc+ U ,
(3.60)

2
b=b,(1—c,)+b,(1—c,)=(47*Vo + W)67r—02 ,  (3.61)

with
T=(mn—3)mR+8,+(1—nqmrS; —(n—1)R; ,
U=mn(R,R,—S,83)/2,
V=(n—L)wR,+S,, W=R,R,—S,S, .

1.2 + 1
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Tilt angle ¢
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-12
c

FIG. 10. The bifurcation curve showing the tilt angle as a
function of o'/ for n=0.4 (full line) and for 7=0.5 (dotted
line), i.e., for a symmetric system.

A numerical examination of @ and b show that b is always
positive while a changes sign for a critical value o, of o
given by

0. =(T+V'T*+7U)/4n" . (3.62)

We find that for o > o, there exists only the trivial solu-
tion ¢=0 while for o <o, the initially symmetric state
undergoes a transition to the broken-parity state charac-
terized by a nonzero value of ¢. We show in Fig. 10 the
bifurcation curves for different values of 7 (i.e., different
values of the melt composition). They exhibit exactly the
same features as in the purely symmetric case (n=1).
The only difference is that the critical wavelength is in-
creased when we move away from the eutectic composi-
tion. We show in Fig. 11 the variation of the critical
wavelength as function of 7. For 7=0.65 (or equivalent-
ly 7=0.35) the critical wavelength is 10% larger than in
the purely symmetric case.

We can also expand the average front undercooling up

to the second order
A=c—d¢?, (3.63)

where

14.0

13.5

13.0

-12
0‘c

12.5
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12.0

Volume fraction n

FIG. 11. Variation of the critical value o, '/?

the volume fraction 7.

as a function of
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FIG. 12. Undercooling as a function of A for axisymmetric
states (solid line) and broken-parity states (dashed line) for a
nonsymmetric system (7=0.4). We compare it with that ob-
tained for a symmetric system (7=0.5) (dotted lines).

c=4A , d=4A

S4
o0+ — (3.64)
° w7

S s4’

S, and S5 are numerical series whose values depend on 7.
They are even functions of (7—1) (see Appendix B). We
observe the same feature as in the pure symmetric case
(p=1). Figure 12 shows that the more we move away
from the eutectic composition, the larger the reduction in
the front undercooling in comparison with the JH result.
This result may explain that it is easier to create tilted
domains with off-eutectic compositions than with eutectic
ones.

IV. CRYSTALLINE ANISOTROPY

It has been known for a long time that lamellar eutec-
tics are generally composed of eutectic grains, i.e.,
domains with uniform crystal orientations of the two eu-
tectic phases. The following question therefore arises:
Are there correlations between crystal and lamellar orien-
tations and if so what is their strength? Experimental ob-
servations [19] show that within a grain the basic state,
i.e., the pattern which in the absence of anisotropy is
made of straight lamellae parallel to the growth direc-
tion, is generally tilted with a small but definite angle
( =5°). This small tilting of the basic state has been inter-
preted as an effect of the weak anisotropy of the surface
energies. This interpretation has been supported by a
perturbative analytic calculation in the small contact an-
gle limit [19]. Another important question naturally
arises: How does the parity-breaking transition manifest
itself since the basic state is in general already weakly tilt-
ed? The broken-parity state, which results from a
dynamical instability, is characterized by a rather large
tilt angle (about 20°). So the transition, we are interested
in is that between weakly and strongly tilted states. In
lamellar growth experiments, it seems difficult, starting
with a given grain, to produce stable strongly tilted
domains with tilt angle of both signs, as to be expected
for a true symmetry-breaking transition. In general, the

lamellar structure preferentially tilts in one direction and
not in the opposite one. The preferential direction corre-
sponds generally to that of the basic state. This observa-
tion has found a natural explanation in anisotropy [20].
This question was addressed only phenomenologically or
solved numerically [21]. Our purpose here is to account
analytically for the effect of anisotropy on the parity-
breaking transition starting from the ‘“‘microscopic”
equations. We will first introduce the changes that are
needed to account for crystalline anisotropy. Then we
will follow exactly the same spirit as used in the purely
isotropic case to analyze the influence of anisotropy on
the parity-breaking transition. Since it has been found
that the homogeneous diffusion layer is not crucial for
parity breaking, we shall confine ourselves to the eutectic
composition case.

In the presence of crystalline anisotropy the appropri-
ate physical quantity is not the interface tension y, but
the interface stiffness ¥ +7’' (where the prime designates
the derivative with respect to the polar angle). If the sur-

face tension is written as
Yik=7/£'l(2){1+aikcos[4(&—0a)]} ’ (4-1)

it immediately follows that the capillary length takes the
form

d=dy{1—ecos[4(3—6,)]} (4.2)
with
()
— 1g _ Vsi Te
e=15a,, d, mLAc

¢ is defined as the angle between the z direction and the
normal to the interface. Finally 0, is the angle defining
the crystal orientation with the z axis as a reference (¢
and 6, are measured with the trigonometric convention).
We consider that the strengths of anisotropies and the
direction of the crystal direction of the minimum energy
are the same for each y;, so that they are all character-
ized by a single strength € and a single angle 6,. This
does not alter the general conclusion which we shall draw
here.

A consequence of crystalline anisotropy is that the
mechanical equilibrium conditions have to be reformulat-
ed. Indeed the interfaces are now subject, besides the
surface-tension force, to torques whose contributions are
proportional to y},. The equilibrium at the triple points
then takes the form

T, +Tp+Te=0, 4.3)

where the vectors I';; are no longer parallel with the
phase interfaces; 'y, =||Ty || =[7v% + 72 ]'/? and the an-
gle between T and Yu is given by
A =arctan(y;, /¥4 ). The contact angles 6, and 6, (see
Fig. 13) can be determined by this vector equation.
Equation (4.3) can be projected along the direction paral-

lel to T ,5 and perpendicular to it to provide

(4.4)
(4.5)

—T i (—8,)cos(t,)+T g (Bp)cos(15)=0,
T (—8,)sin(¢,)+T g (0p)sin(hg) =T ,45(¢) ,
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FIG. 13. Scheme representing the vectors ¥, and I';, at the
a-P triple point. The vectors ¥, are parallel with the phase in-
terfaces while the vectors I';; are not. The contact angle 6,
(6p) is defined as the angle between ¥, (74 ) and the perpendic-
ular to ¥,5. ¥, () measure the angle between I',; (I'g) and
the perpendicular to I',5. Note that the orientation of these an-
gles has been chosen so that they are positive with respect to the
trigonometric orientation. Finally the quantities A, represent
the angles between I';; and ¥ ;.

where
6,=0,+¢, (4.6)

The angles ¢, and ¢ (see Fig. 13) are simply related to
the contact angles 6, and 6 by

¢a:0a+Aal_AaB ’ (4.8)

The quantities I';; depend on the interface orientation.
The pinning angles 8, and 55 define the orientation of the
a-liquid and the B-liquid interface, respectively, while the
tilt angle ¢ determines the orientation of a-B interface.
Note that these equations have been written for the a-f3
triple points. The equations for the S-a triple points are
identical since the a and 8 lamellae are supposed to have
exactly the same physical properties.

We shall assume here a weak enough anisotropy, so
that a first-order expansion about the isotropic case
makes sense. Within this context, the contact angles take
the form

9a:9(0)+68a(9(0),¢) R
9B=: 0(0)+ESB(6(0),¢) .

(4.10)
(4.11)

s, and sg are functions of the contact angle 6'% and the
tilt angle ¢ (see Appendix C). We use the superscript (0)
to recall that we refer to the isotropic case.

For a tilted pattern, with an angle ¢, the pinning angles
6 and @ at the two ends of a given lamella are simply
given by

§=03_¢ s

0=6,+6¢ .

(4.12)
(4.13)

Now we are prepared to deal with the coupling be-
tween the spontaneous parity-breaking transition and
crystalline anisotropy. The diffusion field is obviously
given by the same expression as in the isotropic case [Eq.
(3.12)]. The only difference now is that since our profile
to compute this field is chosen in a such way that it is
compatible with mechanical equilibrium, the definitions
of some parameters in the front profile will be altered to
take this into account. More precisely the coefficients D,
and E, are deduced from those calculated in the pure iso-
tropic case [Egs. (3.13) and (3.14)] by replacing 6'©+ ¢ by
6,+¢ and 6/ —¢ by 0s—¢. The only quantities that are
involved in this change are H +) and X, which should be
redefined as

H®=tan(6,+¢)+tan(65—¢) , (4.14)
_ Atan(6,+¢)
xo—w—)— (4.15)

The new field should now satisfy the Gibbs-Thomson
condition, which takes the form

gxx
dofl—ecos[4(3—6,)]}——— +A
of [ VT aya
=tu(x,z=E¢), (4.16)
with  the profile subject to the constraint

5(A/2,4)—£(0,4)=0.

We follow exactly step by step the same procedure as
for the isotropic problem. It is still possible to find a first
integral of Eq. (4.16), which provides the slope §, as a
function of the other parameters. However, since the ex-
pression obtained did not allow us to go further into the
analytic analysis, we shall here directly use the approxi-
mation of small contact angles, as used before, but still
keep the term which is responsible for the destruction of
the pitchfork bifurcation. The small contact angle limit
amounts to neglecting higher-order terms in §, in Eq.
(4.16). It follows that Eq. (4.16) takes to leading order in
{, the following form:

dO{ 1 -6[005(460 )+4Sln(40u )gx ]}éxx +A

=tu(x,z=¢). (4.17)

A first integration yields

£, —elcos(46, ), +25sin(40,)E21=f , (4.18)
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where
f=tan(6g—¢)—e[cos(46, )tan(H5—¢)
+2s5in(6, )tan* (65— ¢)]
xu—A
o dg

It is useful to split f into two parts; the isotropic and the
anisotropic one. We set

F=r+er?, (4.20)

where f© is the isotropic part of f while ‘! is the
leading-order contribution coming from anisotropy.
Their expressions are simply given by

+ (4.19)

dx .

(0)__ A(O)
0= O _ gy [FU AT
FO=tan(6@—¢) fo 7 dx , @.21)
V= —[cos(40,)tan(6'©—¢)
+25in(46,)tan*(6'0 —¢)]
SB xu(l)_A(l)
+ dx , (4.22)
cos?(0V—¢) fO dy *

where u =uP+eu'? and A=AP+€eA", and use has
been made of 65=06'"+esy [see Eq. (4.10)]. u® and A'©
are the diffusion field and the average undercooling ob-
tained in the absence of anisotropy, while u ‘! is the first-
order term obtained by expansion of the actual field and
A'V is the corresponding first-order deviation of the front
undercooling, which we shall derive below as a function
of the other parameters.

Now we need to get an expression for £, on which to
J

(0)
A2 Ey 1

1937

impose the self-consistency condition. In the isotropic
case we have £, = f'?, so that to leading order Eq. (4.17)
can be written as

gx =f(0)+e[cos(49a )f(0)+f(l)] , (4.23)

which is easily integrated. The self-consistency condition
then becomes

F(d,Au)= fok/z

=0,

{f O +e[cos(46,)f O+ f P ]}dx
(4.24)

where p stands for the control and material parameters.
This equation is a general expression for the parameter ¢
as a function of the other parameters. The undercooling
is given by A=A"+ €AV with

2d
A== [tan(6'+¢)+tan(6 —¢)]

= DY,
_Ten—/l 4.25

+2,,§1 prr (4.25)

2d

A= — == {cos(40, [ tan(6*'+ )+ tan(6' — )]

+25sin(46, )[tan*(6'©+ ¢)—tan*(6'¥—¢) ]}

2d, Sy n sg

A | cos¥(804¢)  cos(6'0—¢)
) i ———D(zl")_l (4.26)

=, m2n—1) 7 ’

Using these expressions, we can write the function F [Eq.
(4.24)] as

F=%[tan(9(0’——¢)—tan(6(0)+¢)]
A 2 p(0) 2 p(0) A
+e ?sm(490)[tan (6" —¢)+tan“(6 +¢)]+Z

+

A2 cos(40,)EX) _ | +ES)_, }

2mdy , o) (2n —1)?

If €=0, we recover the result we obtained in the absence
of anisotropy. The new contribution (the terms in €)
expresses the effect of anisotropy.

We can now make an expansion of F in ¢. We expand
the isotropic terms up to the third order in ¢ while we
just take (in a perturbative scheme) the leading term
(¢=0) in ¢ of the anisotropic terms. The result is

a

49(0)2

™Mo, —o)p— ¢ +ev=0, (4.28)

with

2md, n(2>0) (2n =17

SB N

cosZ(G(O)——gb) B 0052(9(0)+¢)

(4.27)

,”.4

2.
v="(sa00 =50 No,—0o)—46%in(46,)0} , (4.29)

where o,=a,/7* (a;=0.66), a,=2.95, and s,
=5,p5(0%,6=0). If €=0, we recover immediately the
result found in the isotropic case. The anisotropy yields
an homogeneous term v in the bifurcation equation
(4.29). In the range of wavelength we are interested in
(i.e., where A is close to the critical value A, correspond-
ing to the parity-breaking bifurcation point in the ab-
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FIG. 14. The bifurcation diagram of the tilt angle as a func-
tion of o~!/? for anisotropic surface tension (e=0.5 and
6,=—0.1). Stable branches are represented by solid lines and
unstable ones by dashed lines. The dotted lines represent the bi-
furcation diagram for isotropic surface tension (e =0).

sence of anisotropy), v has a well-defined sign which is
given by the orientation of the crystalline anisotropy
[v=—270"in(6,)0,]. The main effect due to the
presence of this homogeneous term is to render the bifur-
cation imperfect.

Figure 14 shows the behavior of the tilt angle ¢ as a
function of o. The dashed part represents the unstable
branch. This problem is similar, for example, to that of a
ferromagnetic transition (where ¢ plays the role of mag-
netization) in an external applied magnetic field [which
plays a similar role as the v term in Eq. (3.23)]. The bi-
furcation equation (4.28) was postulated in a previous pa-
per [21].

V. CONCLUSION

This paper has dealt with a successful analytic theory
of parity breaking in lamellar eutectic growth. Our
analysis is very simple in its spirit (although not as simple
in the algebra) but captures the main essential features.

To emphasize the basic ingredients of parity breaking
we did not want to unnecessarily make the presentation
too complex, and therefore we first restricted ourselves to
a situation where the solid phases have the same physical
properties. This had the advantage to greatly simplify
the algebra. The confrontation of the present results with
those obtained in our previous complete (and sophisticat-
ed) numerical work has shown that there is a good quan-
titative agreement between the two treatments. Our ana-
lytic formulas can be used with confidence in real situa-
tions.

In a second part we have shown in a transparent way
how the homogeneous diffusion boundary layer —which
is related to off-eutectic compositions—is not crucial in
the mechanism by which tilted pattern is formed (it sim-
ply enters in mass conservation on the global scale). Its
nonrelevance is now beyond any doubt.

The third line of this work has dealt with the effect of
crystalline anisotropy, an effect which is persistent in real
experiments. We have shown from the ‘“microscopic”
model that crystalline anisotropy destroys the pitchfork
bifurcation in favor of an imperfect one.
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Finally, we keep naturally in mind that we should ex-
tend our calculation to the most general case where the
two solid phases have different properties. This should
provide us with analytic expressions—such as the wave-
length at which parity breaking takes place as a function
of the physical parameters—which should be crucial to
guide further experimental developments.
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APPENDIX A: DETERMINATION
OF THE PARITY OF F AND G

We would like to check the symmetry properties of the
functions F(¢,y,) and G(¢,y,) involved in the analytic
treatment of parity breaking for melt at off-eutectic com-
position (in the absence of anisotropy). Of course the fol-
lowing proof also applies to the function F calculated in
the particular case where the melt is at eutectic composi-
tion.

First we focus on the function F(¢,y,). We consider
the quantity F(—¢, —y,), which is given by

Fl—¢,—yg= [P— L2800 4y
O V14 fUx, — ¢, —yo)
with
f(x,—d,—yq)
=sin(6+¢)
+f0"u(X’—¢’ _y";;A(_‘ﬁ’ Yoy a2

Let Y=nA—X in the expression of f(x,—¢,—y,).
This change of variable transforms Eq. (A2) into

S (x,—¢, —po)=sin(6+4)

_ f‘n}»—x ( Ya¢7y0)—A(¢’y0)
7 do

day ,

(A3)

where we have used the symmetry properties of the
diffusion field and that of the average front undercooling.
Namely, we have u(X,—¢,—yy)=u(Y,d,y,) and
Al—¢, —yo)=A(d,po).

The procedure now consists in splitting the integral ap-
pearing in Eq. (A3) into two parts as follows:
f(x,—¢,—yo)=sin(0+4¢)

_ fO u( Y:¢yy())-—A(¢’y0)
nA dO

_ fn}»—x u( Y»¢’y0)—A(¢’y0)
0 dg

ay
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The first integral can easily be evaluated by using the
Gibbs-Thomson relation for the a phase (dogk=u —A).
The result is sin(6—¢@)+sin(6+¢@). Then we can rewrite
(A4) as

f(x’_¢a _.VO)
o emexu (Y690~ Ald,y0)
= —sin(0 ¢) fo do dy
=_f(77A'_x,¢’y0) . (AS5)

It suffices now to insert this relation into Eq. (A1), and by
making the last change of variable X =nA —x, we obtain
the desired symmetry property

f'qA f(ﬂk'_xflsJ’O

—¢,—y dx
o) V1 fAqh—x,,70)
(X,
fnk f é,y0) dx
V 1+ fAX, 6,9,
=—F($,y,) . (A6)

By following the same strategy as that exposed above we
can also easily check the symmetry property of the func-
tion G (¢,yq).

APPENDIX B:
EXPRESSIONS OF THE SERIES R; AND §;

In this appendix we give the expressions of the series
R, and S; (i=1,2,3) involved in the expansion of the func-
tions F(¢,y,) and G (¢,y,). We will also give the expres-
sions of the series S, and S5 appearing in the expansion
of the undercooling A(¢,y,).

We first define four quantities which will be useful in
the following. These quantities are

a, , =2[1+cos(2ymn)lsin(nmm) , (B1)
b, m, =2sin(2nmn)cos(nmm) , (B2)
Cp.m =2 sin(2nmn)sin(nmrm) , (B3)
d, n, =2[1—cos(2nmn)]cos(nmm) . (B4)

The series R, and S, can be written in the following
form:

R,=—R}+2R}—2R}, (B5)
S, =S}—28?+28%, B6)
where
-3 n+(—:1)n( ). {4 sin(qmn)cos’(nmn)] |
n=1
(B7)
Ri= él ,:gl 1]+n(r; (1’1)1'"(_1’1—)1) {@nm—bum}»  (BY)

1939
- - +(—=1)"(1—7n)
R3= 1 ma, ,, —nb, .},
! ngl m2=1 nm(mz—nz) { ’ " }
(m+n)
(B9)
and
o0 —_ n —_
si=3 n+( 1)4(1 ) {4 sin’(gwn)cos(nmn)} ,
n=1 n
(B10)
3 gt (=D"(1—n)
S2= U Com—dym}, (BID
! ,,21 mzzl n*m(m —n) ten )
hd +(—=1)"™1—n)
S}= ul me, ,, —nd, .},
! nél 2_1 n m(m ___n2) { ’ ’ ]
(m+n)
(B12)
while S, and R, can be expressed as
R,=R}—2R%+2R3}, (B13)
=—5l+252-253 (B14)
where
— n —
Ri= 2 7+ 1) u {4sin(mrn)cos2(n7m)] ,
n=1
(B15)
3 —1
2 " m[p>+(—1)"(1—7)°] b
R2 nzl m2=1 n(m _n) {an,m n,m} ’
(B16)
© © 3+(_1)m(1_17)3]
R3= m[n nm—nbnm ’
2 ,,2='1 ,,,2:1 n(m*—n?) tmay, o
(m+#n)
(B17)
and
Si=3 ul +(—1n) (1—m)’ {4 sin’(gmn)cos(nmn)} ,
n=1
(B18)
o n—1 3+(_1)m(1___1’)3]
Sz: m["] 4 m_dnm ’
2 nél m2:1 n*(m —n) ten m)
(B19)
-3 3 mipt(=D"U1—n)’] _
S%_ngl m2=1 nz(mz—nz) {mcn,m ndn,m} ’
(m+#n)

Finally S; and R; are given by

R,

S3

=R}—2R}+2R3,

=—S§}+285—253

(B20)

(B21)

(B22)
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where
Ri=3 77—(—1)4(1—77) {4 sin’(gmn)cos(nmn)} ,
n=1 n
(B23)
o n—1 o meq1 __
R%:z 7 (2 1)™(1 n){cnm_dnm}’ (B24)
n=lm=1 n‘m(m—n) ’ ’
- < —(—=1)"(1—
RI=3 n . )2( zll){mcn,m—”dn,m] ,
=1 m=1 h'm(m°—n?)
(m##n)
(B25)
si=3 St ¥ §1~ ){4sin(771-rn)cosz(mrn)} ,
n=1 n
(B26)
_ & " mp—(—1)™1—n)] _
n§1 m2—1 nm(m —n) tanm =bum} >
(B27)
& <@ mp—(=1)"1-—n)
=2 2 L2 2_ 2 Tl]Imnm—nbn,m}
n=1 m=1 nm(m*—n~)
(m+#n)

(B28)
The series S, and S5 appearing in the expansion of
A(¢,y,) are found to be

o

S.=S sinz(:rprn)

T, (B29)
n=1 n

s,= 3 A= EDZD) G (n) (B30)
n=1 n

We can note that the series S; are even functions of the
variable (7—1) while the series R; are odd functions of
this variable. As a consequence, R;(1=1)=0.

APPENDIX C:
DERIVATION OF THE EXPRESSION
OF THE CONTACT ANGLES
IN THE WEAK ANISOTROPY LIMIT

We would like here to derive the expressions of the
contact angles 8, and 0 in the limit where the anisotropy
of surface energies is weak. Our starting point is the set
of equations (4.4) and (4.5) which expresses the mechani-
cal equilibrium condition at the triple points. The stra-
tegy consists in expanding these equations up to first or-
der in the small parameter € (which measures the
strength of anisotropy). By setting

I‘,k—‘l“ +el",k ’ (C1)
Y=Yy Fedy, (C2)
Ye=v +eyy’ (C3)

(where i and k denote a, B, or I), Egs. (4.4) and (4.5) can
be rewritten as

— [T +er [ cos(¢Y) — ey sin(y) ]
+ [T+ el J[cos(P) — ey sin(¥)]=0,  (C4)
[TQ+ D) [sin(4'?) + ey Peos((0)]
+ [T+ el sin(Y) + eyl ‘cos(y)]
=Ty+ell). (C5)

We recall that the angles ¥, and 9 (see Fig. 13) are sim-
ply related to the contact angles 6, and 6 by

¢£10’1):9(n?’1)+A(0’”—A(O’” (C6)
lp;go’l):e;go’])—AOI +A(Ol . (C7)
Using the definition of the quantities I’y

(T =[v% +7;21"/?), together with the expression of sur-
face tensions y;; [Eq. (4.1)] we can determine the zeroth-
and first-order contribution of the I';;’s. We find

=Vsi 4600 +¢+6,)],
FBI =y, FBI =y cos[4(65'—¢—6,)], (C8)
I‘leﬂ)=)/f$cos[—4(¢+6‘,)] .

We can equally derive the expressions of the angles A to
zeroth and first order in € by using the fact that
A, =arctan(yj; /v ). The result is

(0) (0)

(1)_ —
Ysi COS[

(0) —,,(0)
Fab"?’aﬁ’

AY=0, AY=—4sin[—4(6Q+¢+06,)],
Af)=0, Af)=—4sin[4(6)'—¢—06,)], (C9)
A% =0, Al)=—4sin[—4(¢+6,)] .

Our aim now is to determine the expressions of ¢{>!
and z/J;;O’“ from Egs. (C4) and (CS) and then to plug them
into (C6) and (C7) in order to obtain the expressions of
the contact angles oL 0 (0, 1)

To order €, the two equatlons (C4) and (C5) give

—TWcos(¢'?)+ ' cos( ¢"°)
I Psin(p ) +Tsin(y" rg}; .

(C10)
(C11)

We recover the result found in the isotropic case. We
have 1/J£,O)=1/1;,°)59‘°) (where sin0‘°)=Fﬁ$/F§?)), so that
6(0) — B(BO) = 9(0)
p .
To order € the set of equations (C4) and (C5) yields

[F(O)dffx”—F(O)tJJ(”]sinQ(O):[Flel)—
[Ty + Ty Icoso'”
=T~ [TW+T}

' 1cos6'” (C12)

1sin6'® . (C13)

Note that use has been made of the fact that

P10 =1’ =6, Solving this set of equations we obtain
1
&= npag ] coS260 7 leos 46+ 6+ 4,)]
—cos[4(67—¢—6,)]

+s5in?[68'@]cos[4(¢+6,)]} , (C14)
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3= g (0820 leosl 400 =6 =0,)]

—cos[4H60+¢+6,)]

+sin?[6'©]cos[4(¢+6,)]] , (C15)

where we have made use of the expressions of the I'{}’s
[Eq. (C8)]. .

Finally we can determine the expressions of 6'!’ and
9(,3” by using Egs. (C6) and (C7), together with the expres-
sions of the A{}”’s [Eq. (C9)]. The result is

0=y —4{sin[4(0V+¢+6,)]—sin[4(s+0,)1} ,

6=y —4{sin[4(6'"—¢$—6,)]+sin[4(+6,)]} .
(€17

In summary we can write
0,=6"+es,(6°,6,6,),

0,=0+es45(6'°,4,6,) 19
ﬂ B »¢¥Hr Vg ’

where s, and sgz are given by Egs. (C16) and (C17), as
functions of 9(°§3, ¢, and 8, [by using the expressions of
\ s given by Egs. (C14) and (C15)].
The quantity of interest is the difference 5,5 —sg, eval-
uated at =0 (it appears in the bifurcation equation).

(C16) From the above equations we find that
J
(0)
Sq0—Spo= %}l {cos[4(0'94+0,)]—cos[4(6'”—@,)]} +8sin[46, ] +4{sin[4(6*—0,)]—sin[4(6'V+6,)]] ,
sin
(C19)
and in the small contact angle limit we simply have
Sq0—Sg=—8sin(40,) . (C20)
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